If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=243
We move all terms to the left:
y^2-(243)=0
a = 1; b = 0; c = -243;
Δ = b2-4ac
Δ = 02-4·1·(-243)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*1}=\frac{0-18\sqrt{3}}{2} =-\frac{18\sqrt{3}}{2} =-9\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*1}=\frac{0+18\sqrt{3}}{2} =\frac{18\sqrt{3}}{2} =9\sqrt{3} $
| (-0,6-1,2x)=(1,2x+0,6) | | 3.4x-11.2x+6=0 | | 8x+1=49.X= | | 7k^2-63=0 | | y^2-100y-2400=0 | | -8+(-6x-5)=x-12 | | X=100x+1/2x | | √4-5x=2-5x | | √4x-5x=2-5x | | 3x+5=7+5x=2 | | 3x+5=7+2=2 | | X+14°+3x+50°=180° | | (3d+3)+(3d+3)= | | 0.2x‐6/1.1x-1=-2/5 | | 1/2k= | | 4m+17/2=5 | | 2^(x+1)+2^(x+2)=96 | | -7=14(p+3) | | 2(x+1)+x= | | 4/9=2/s | | 4/9=2/a | | 7m/3=35/9 | | 7/k+5=2 | | 1.25x=6+1.2x | | 4y-2/3=3/5 | | -1/3x+3=-0,1x-6 | | n+n+2+n+4=-24 | | 2(3x+1)=42 | | 2(3x+1=42 | | 20w-4-10w-2=20 | | 3x+3/7=15/7 | | 20w-4-10w+2=20 |